
Bulk Synchronous Parallel ML 0.5

Reference Manual

Frédéric Loulergue
with1

Wadoud Bousdira, Frédéric Gava, Louis Gesbert,
Gaétan Hains, Guillaume Petiot, Julien Tesson

http://traclifo.univ-orleans.fr/BSML

October 29, 2010

1and some code from Xavier Leroy’s OcamlMPI

http://traclifo.univ-orleans.fr/BSML

Contents

1 Introduction 3

1.1 The BSP Model . 4

1.2 Explicit processes and the SPMD programming style . 5

1.3 Overview of the core BSML library . 6

1.3.1 Examples . 7

1.3.2 Remark on nesting . 8

1.3.3 A new syntax for BSML . 8

2 The BSML Scripts 10

2.1 Compilation (bsmlc and bsmlopt) . 10

2.2 The toplevel system (bsml) . 10

3 The BSML Library 12

3.1 Module Bsmlsig : Interface of all the main components of BSML. 12

3.1.1 BSML Primitives . 12

3.1.2 Interface for modules providing BSP parameters 14

3.1.3 Interface for low-level communication modules . 14

3.2 Module Bsmlbase : Very often used functions . 15

3.3 Module Bsmlcomm : Parallel functions with communications 17

3.4 Module Bsmlsort : Sorting . 19

3.5 Module Tools : Useful sequential functions . 19

3.6 Module Bsmlbckcomp : For backward compatibility . 20

3.7 Module Bsmlskeleton : Distributed structures . 20

Bibliography 24

2

Chapter 1

Introduction

Some problems require performance that only massively parallel computers offer whose programming
is still difficult. Works on functional programming and parallelism can be divided in two categories:
explicit parallel extensions of functional languages — where languages are either non-deterministic
[32] or non-functional [2, 12] — and parallel implementations with functional semantics [1] — where
resulting languages do not express parallel algorithms directly and do not allow the prediction of
execution times. Algorithmic skeleton languages [9, 33], in which only a finite set of operations (the
skeletons) are parallel, constitute an intermediate approach. Their functional semantics is explicit but
their parallel operational semantics is implicit. The set of algorithmic skeletons has to be as complete
as possible but it is often dependent on the domain of application.

The design of parallel programming languages is therefore a trade-off between:

• the possibility of expressing parallel features necessary for predictable efficiency, but which
makes programs more difficult to write, to prove and to port

• the abstraction of such features that are necessary to make parallel programming easier, but
which must not hinder efficiency and performance prediction.

We are exploring the intermediate position of the paradigm of algorithmic skeletons in order to
obtain universal parallel languages where execution cost can be easily determined from the source
code (in this context, cost means the estimate of parallel execution time). This last requirement forces
the use of explicit processes corresponding to the parallel machine’s processors. Bulk Synchronous
Parallel (BSP) computing [30] is a parallel programming model which uses explicit processes, offers a
high degree of abstraction and yet allows portable and predictable performance on a wide variety of
architectures.

A denotational approach led us to study the expressiveness of functional parallel languages with
explicit processes [18] but this is not easily applicable to BSP algorithms. An operational approach
has led to a BSP λ-calculus that is confluent and universal for BSP algorithms [28], and to a library of
bulk synchronous primitives for the Objective Caml [23] language which is sufficiently expressive and
allows the prediction of execution times [17].

This framework is a good trade-off for parallel programming because:

• we defined a confluent calculus so

– we can design purely functional parallel languages from it. Without side-effects, programs
are easier to prove, and to re-use (the semantics is compositional)

– we can choose any evaluation strategy for the language. An eager language allows good
performances.

• this calculus is based on BSP operations, so programs are easy to port, their costs can be pre-
dicted and are also portable because they are parameterized by the BSP parameters of the target
architecture.

3

The version 0.1 of our BSML library implements the BSλ-calculus primitives using Objective Caml
[23] and BSPlib [19] and its performance follows curves predicted by the BSP cost model [3]. This
environment is a safe one. Our language is deterministic, is based on a parallel abstract machine [31]
which has been proved correct w.r.t. the confluent BSλp-calculus [24] using an intermediate semantics
[25]. A polymorphic type system [14] has been designed, for which type inference is possible. The
small number of basic operations allows BSML to be taught to BSc. students.

The BSPlib library is no longer supported nor updated. Moreover BSML is used as the basis for the
Caraml project which aims to use Objective Caml for Grid computing with, for example, applications
to parallel databases and molecular simulation. In such a context, the parallel machine is no longer
a homogeneous machine as prescribed by the BSP model and global synchronization barriers are too
costly. Thus we will need encapsulated communications between differents architectures and subset
synchronization [35]. Version 0.2 of the BSML library is hence based on MPI [37]. It also has a smaller
number of primitives which are closer to the BSλ-calculus than the primitives of version 0.1. In version
0.1, communication primitives manipulate parallel vectors of lists and parallel vectors of hash tables
and are less easy to be taught.

Version 0.4 [27] adds the following features:

• The primitive at is replaced by the more general proj primitive.

• The type of the put primitive has been generalized. This new version of put is backward compat-
ible.

• The whole BSML Library has been modularized. A new low-communication module has been
added: A module for TCP/IP communications.

• Pretty-printing of BSML parallel vectors is now possible in the toplevel.

Version 0.5 [7] adds :

• a revised syntax (1.3.3) which improves the ease of writing and reading of BSML programs,

• new modules in the standard library.

The section 1.1 presents the BSP model, section 1.2 explains why processes should be explicit in
parallel programming languages and compares our approach with the SPMD paradigm. Section 1.3
gives an overview of the core BSML library.

1.1 The BSP Model

The Bulk Synchronous Parallel (BSP) model [40, 29, 36] describes: an abstract parallel computer, a
model of execution and a cost model. A BSP computer has three components: a homogeneous set of
processor-memory pairs, a communication network allowing inter processor delivery of messages and
a global synchronization unit which executes collective requests for a synchronization barrier. A wide
range of actual architectures can be seen as BSP computers.

The performance of the BSP computer is characterized by three parameters (expressed as multiples
the local processing speed): the number of processor-memory pairs p ; the time l required for a global
synchronization ; the time g for collectively delivering a 1-relation (communication phase where every
processor receives/sends at most one word). The network can deliver an h-relation (communication
phase where every processor receives/sends at most h words) in time g × h. Those parameters can
easily be obtained using benchmarks [19].

A BSP program is executed as a sequence of super-steps, each one divided into (at most) three
successive and logically disjointed phases (Fig. 1.1):

1. each processor uses its local data (only) to perform sequential computations and to request data
transfers to/from other nodes;

2. the network delivers the requested data transfers;

3. a global synchronization barrier occurs, making the transferred data available for the next super-
step.

4

synchronization barrier

synchronization barrier

T
IM

E

a

...

. . .

. . .P0 P1 P2 P(p-1)

Figure 1.1: A BSP super-step

The execution time of a super-step s is, thus, the sum of the maximal local processing time, of the
data delivery time and of the global synchronization time:

Time(s) = max
i:processor

w
(s)
i + max

i:processor
h
(s)
i × g+ l

where

{

w
(s)
i = local processing time on processor i during super-step s,

h
(s)
i = max{h

(s)
i+ , h

(s)
i− }

where h
(s)
i+ (resp. h

(s)
i−) is the number of words transmitted (resp. received) by processor i during

super-step s.
The execution time ∑s Time(s) of a BSP program composed of S super-steps is, therefore, a sum of

3 terms:

W + H × g+ S× l where

{

W = ∑s maxi w
(s)
i

H = ∑s maxi h
(s)
i .

In general, W,H and S are functions of p and of the size of data n, or of more complex parameters
like data skew. To minimize execution time, the BSP algorithm design must jointly minimize the
number S of super-steps, the total volume h with imbalance of communication and the total volume
W with imbalance of local computation.

Bulk Synchronous Parallelism (and the Coarse-Grained Multicomputer, CGM, which can be seen
as a special case of the BSP model) is used for a large variety of applications: scientific computing
[6, 21], genetic algorithms [8] and genetic programming [10], neural networks [34], parallel databases
[4], constraint solvers [15], etc. It is to notice that “A comparison of the proceedings of the eminent con-
ference in the field, the ACM Symposium on Parallel Algorithms and Architectures, between the late
eighties and the time from the mid nineties to today reveals a startling change in research focus. Today,
the majority of research in parallel algorithms is within the coarse-grained, BSP style, domain” [11].

1.2 Explicit processes and the SPMD programming style

Among researchers interested in declarative parallel programming, there is a growing interest in exe-
cution cost models taking into account global hardware parameters like the number of processors and
bandwidth. With similar motivations we are designing an extension of ML called BSML for which
the BSP cost model facilitates performance prediction. Its main advantage in this respect is the use of
explicit processes: the map from processors to data is programmed explicitly and does not have to be
recovered by inverting the semantics of layout directives.

In BMSL, a parallel value is built from an ML function from processor numbers to local data. A
computation superstep results from the pointwise application of a parallel functional value to a par-
allel value. A communication and synchronization superstep is the application of a communication

5

template (a parallel value of processor numbers) to a parallel value. A crucial restriction on the lan-
guage’s constructors is that parallel values are not nested. Such nesting would imply either dynamic

process creation or some non-constant dynamic costs for mapping parallel values to the network of
processors, both of which would contradict our goal of direct-mode BSP programming.

The popular style of SPMD programming in a sequential language augmented with a commu-
nication library has some advantages due to its explicit processes and explicit messages. In it, the
programmer can write BSP algorithms and control the parameters that define execution time in the
cost model. However, programs written in this style are far from being pure-functional: they are
imperative and even non-deterministic. There is also an irregular use of the pid (Processor ID i.e.
processor number) variable which is bound outside the source program. Consider for example p static
processes (we refer to processes as processorswithout distinction) given an SPMD program E to execute.
The meaning of E is then

[[E]]SPMD = [[E@0 || . . . || E@(p− 1)]]CSP

where E@i = E[pid ← i] and [[E]]CSP refers to concurrent semantics defined by the communication
library, for example the meaning of a CSP process [20]. This scheme has two major disadvantages.
First, it uses concurrent semantics to express parallel algorithms, whose purpose is to execute pre-
dictably fast and are deterministic. Secondly, the pid variable is used without explicit binding. As a
result there is no syntactic support for escaping from a particular processor’s context to make global
decisions about the algorithm. The global parts of the SPMD program are those which do not depend
on any conditional using the pid variable. This dynamic property is thus given the role of defining the
most elementary aspect of a parallel algorithm, namely its local vs global parts.

We propose to eliminate both of these problems by using a minimal set of algorithmic operations
having a BSP interpretation. Our parallel control structure is analogous to the PAR of Occam [22] but
without possibility of nesting. The pid variable is replaced by a normal argument to a function within
a parallel constructor. The property of being a local expression is then visible in the syntax and types.
The current implementation of BSML is the BSML library, which is described below.

1.3 Overview of the core BSML library

There is currently no implementation of a full Bulk Synchronous Parallel ML language but rather
a partial implementation: a library for Objective Caml. The so-called BSML library is based on the
following elements.

It gives access to the BSP parameters of the underling architecture. In particular, it offers the
constant bsp p: int such that the value of bsp p is p, the static number of processes of the parallel
machine. The value of this variable does not change during execution (for “flat” programming, this is
not true if a parallel juxtaposition is added to the language [26]).

There is also an abstract polymorphic type α par which represents the type of p-wide parallel
vectors of objects of type α , one per process. The nesting of par types is prohibited. Our type system
enforces this restriction [13]. This improves on the earlier design DPML/Caml Flight [16, 12] in which
the global parallel control structure sync had to be prevented dynamically from nesting.

This is very different from SPMD programming (Single Program Multiple Data) where the pro-
grammer must use a sequential language and a communication library (like MPI [37]). A parallel
program is then the multiple copies of a sequential program, which exchange messages using the
communication library. In this case, messages and processes are explicit, but programs may be non
deterministic or may contain deadlocks.

Another drawback of SPMD programming is the use of a variable containing the processor name
(usually called “pid” for Process Identifier) which is bound outside the source program. A SPMD pro-
gram is written using this variable. When it is executed, if the parallel machine contains p processors,
p copies of the program are executed on each processor with the pid variable bound to the number
of the processor on which it is run. Thus parts of the program that are specific to each processor are
those which depend on the pid variable. On the contrary, parts of the program which make global
decision about the algorithms are those which do not depend on the pid variable. This dynamic and
undecidable property is given the role of defining the most elementary aspect of a parallel program,
namely, its local vs global parts.

6

The parallel constructs of BSML operate on parallel vectors. Those parallel vectors are created by:

mkpar: (int→ α)→ α par

so that (mkpar f) stores (f i) on process i for i between 0 and (p− 1). We usually write f as fun pid→ e
to show that the expression e may be different on each processor. This expression e is said to be local.
The expression (mkpar f) is a parallel object and it is said to be global.

The dual operation of mkpar is:

proj: α par→ (int→ α)

This primitive requires a full super-step to be evaluated. It should not be evaluated in the context of
a mkpar.

A BSP algorithm is expressed as a combination of asynchronous local computations (first phase
of a super-step) and phases of global communication (second phase of a super-step) with global syn-
chronization (third phase of a super-step). Asynchronous phases are programmed with mkpar and
with:

apply: (α→ β) par→ α par→ β par

apply (mkpar f) (mkpar e) stores (f i) (e i) on process i. Neither the implementation of BSML, nor its se-
mantics [25] prescribe a synchronization barrier between two successive uses of apply.

Readers familiar with BSPlib [36, 19, 5] will observe that we ignore the distinction between a
communication request and its realization at the barrier. The communication and synchronization
phases are expressed by:

put:(int→ α) par→ (int→ α) par

Consider the expression: put(mkpar(fun i→ fsi)) (*)
To send no value from process j to process i, (fsj i) must evaluate to a value v such as Tools.is empty v

is true. Such values include the empty list, the None value of type α option, the value of type unit and
any first constant constructor in a sum type. To send a value v from process j to process i, the function
fsj at process j must be such as (fsj i) evaluates to v and v is such as Tools.is empty v is false.

Expression (*) evaluates to a parallel vector containing a function fdi of delivered messages on every
process. At process i, (fdi j) evaluates to the empty value of the type if it exists and if process j sent no
message to process i or evaluates to v if process j sent the value v to the process i.

1.3.1 Examples

For example, one can define get one such that :

get one 〈 x0 , . . . , xp−1 〉〈 i0 , . . . , ip−1 〉 = 〈 xi0 , . . . , xip−1 〉

(∗ val replicate: α→ α par ∗)
let replicate x =

mkpar (fun pid→ x)

(∗ val apply2: (α → β→ γ) par→ α par→ β par→ γ par ∗)
let apply2 f x y =

apply (apply f x) y

(∗ val get one: α par→ int par→ ’ a par ∗)
let get one datas srcs =

let pids = parfun (fun i→ natmod i (bsp p())) srcs in
let ask = put(parfun (fun i dst→ if dst=i then Some() else None) pids)
and replace by data =

parfun2 (fun f d dst→ match(f dst)with Some()→ Some d| → None) in
let reply = put(replace by data ask datas) in
parfun (fun(Some x)→ x) (apply reply pids)

replicate, apply2 and get one are part of the module Stdlib.Base and Stdlib.Comm.

7

1.3.2 Remark on nesting

As explained in the introduction, parallel vectors must not be nested. The programmer is responsible
for this absence of nesting. A program containing e.g. a type int par par will have a unpredictable
behaviour. This kind of nesting is easy to detect. But nesting can be more difficult to detect, e.g :

let vec1 = mkpar (fun pid→ pid)
and vec2 =

get one
(replicate 1)
(mkpar (fun pid→ if pid=0

then last()
else pid−1)) in

let couple1 = (vec1,1)
and couple2 = (vec2,1) in
mkpar (fun pid→ if pid<(bsp p())/2

then snd (couple1)
else snd (couple2))

Objective Caml being a strict language, the evaluation of the last expression would imply the
evaluation of vec1 on the first half of the network and vec2 on the second half of the network. But a get
implies a synchronization barrier and a mkpar implies no synchronization barrier. So this will lead to
mismatched barriers and the bevahiour of the program will be unpredictable.

In order to avoid such problems, it is sufficient that every subexpression of a sequential expression
(i.e. with no par type) is also sequential. The only exception is at whose type is bool par→ int→ bool.
But at must only be used in a if then else expression and the two branches of the conditional must be
non-sequential expressions.

We have now a polymorphic type system which ensures the absence of such nesting [13]. There is
no implementation which supports the whole Objective Caml language.

1.3.3 A new syntax for BSML

Having a very small core of parallel operations is a great strength for the formalization of the lan-
guage. It makes the definitions clear and the proofs shorter. Being able to embed these primitives in
higher-order functions is precious and allows complex parallel operations in little code. However, the
program, even if high-level, still has to deal with replicated values and parallel vectors, and the use
of the primitives can sometimes become awkward. Indeed, every operation inside of parallel vectors
has to call a primitive and define an ”ad hoc” function. This gets worse when working with multi-
ple vectors, with nested calls to apply. Simply transforming a pair of vectors into a vector of pairs is
written

let combine vectors(v, w) = apply(parfun(fun v w→ v, w) v) w

This could be made simpler with the definition of

let parfun2 f x y = apply (parfun f x) y

We get then:

let combine vectors(v, w) = parfun2(fun v w→ v, w) v w

which is easier to read, but still unsatisfactory because we have to define, each time, a specific function.
This implies creating named parameters although our function will only be applied to our vectors, and
can be confusing:

let combine vectors(v, w) = parfun2 (fun w v→ w, v) v w

which is exactly the same as above but can lead the programmer to errors.
Instead of a point of view based on primitives, we can consider the execution levels such that one

can declare code that will be executed globally as in standard Ocaml and code that will be executed
locally, from a parallel vector. Then, to access to local data in a local section, we need no more to define
additional functions because opening vectors now can be done locally. A local section is represented
by ≪≫. This is a new syntax for parallel vectors: ≪ x≫ . Replicated information is available inside

8

Primitive Type Description

≪ e≫ t par if e : t 〈e, . . . , e〉
$this$ (within a local section) int i on processor i
v (within a local section) t (if v : t par vi on processor i (if v = 〈v0, . . . , vp−1〉)

Figure 1.2: Summary of Revised BSML Syntax

the vector, as with the mkpar above. To access local information, we add the syntax $ x $ to open the
vector x and get the local value it contains ; $ $ can obviously be used only within local sections. It is
now possible to write combine vectors as follows:

let combine vectors (v, w) =≪ v, w≫

which is shorter, clearer and thus less error-prone. Additionally, the local pid can be accessed with
$this$, to replace calls to mkpar. Synchronous primitives (proj and put) do not need a special syntax, but
their use is already made more simple.

Now what about the expressiveness of BSML primitives? The answer is, our new syntax is as
expressive as the initial one. Indeed,≪≫ combined with $this$ is strictly equivalent to mkpar with the
definition:

let mkpar f =≪ f $this$≫

and the use of any other vector in $$ is equivalent to a call to apply. For example,

let p = put(apply (mkpar (fun sendfrom x sendto→ e (sendfrom, sendto, x))) x)

which computes values to be communicated depending on source, destination and a vector x can now
be written:

let p = put≪ fun sendto→ e($this$, sendto, x)≫

Figure 1.2 gives a summary of the revised BSML syntax.

9

Chapter 2

The BSML Scripts

2.1 Compilation (bsmlc and bsmlopt)

bsmlc.mpi, bsmlc.seq, and bsml.tcp are scripts that call the Objective Caml batch compiler ocamlc,
which compiles Caml source files to bytecode object files and links these object files to produce stan-
dalone bytecode executable files with arguments to use the BSML library :

• bsmlc.mpi produces a MPI parallel version of the program.

• bsmlc.tcp produces a parallel version of the program, communications in the program are per-
formed as TCP/IP communications.

• bsmlc.seq produces a sequential version of the program. It may be useful if you want to test a
program on a sequential machine.

bsmlc is a more general script. For exameple bsmlc -seq is equivalent to bsmlc.seq. Other flags
are -mpi and -tcp.

Parallel versions of the programs should be run with: bsmlrun.mpi, bsmlrun.tcp, or the general
script bsmlrun.

The bsmlrun.mpi script has the same options as the mpirun program you are using. The bsmlrun.tcp
script looks for a .bsmlnodes file in your home directory. This file should contain the list of the names
(or IP addresses) of the machines in your cluster. Another file could be given using the -nodes option.

When you run a program which uses the BSML library, the machine’s BSP parameters are read
from the file $HOME/.bsmlrc. Entries in this file are of the form

number_of_procs,g_parameter,l_parameter,r_parameter

g parameter, l parameter and r parameter must be written as caml float ie, 1 is written 1. or 1.0.
The sequential version of the library reads the first line of the file, the parallel version reads the line
which corresponds to the number of processor available on your machine.

See also the ocamlc command and the mprun command.
bsmlopt.mpi, bsmlopt.tcp and bsmlopt.seq produce respectively parallel and sequential native

code if the ocamlopt compiler is present on your machine. There also exists a more general bsmlopt
script.

See also the ocamlopt command.

2.2 The toplevel system (bsml)

bsml permits interactive use of the Objective Caml system with the BSML library through a read-eval-
print loop. In this mode, the system repeatedly reads Caml phrases from the input, then typechecks,
compiles and evaluates them, then prints the inferred type and result value, if any. The system prints
a # (sharp) prompt before reading each phrase. The evaluation is done sequentially. If you use the

10

pure functional subset of Ocaml the result will be exactly the same as in the parallel case (Even if you
use imperative features the result may be the same).

See also the ocaml command.

11

Chapter 3

The BSML Library

This chapter describes the functions provided by the BSML library modules. These modules are
automatically linked with the user’s object code files by the bsmlc and bsmlopt scripts.

Most of the described modules are functors. To ease the use of the BSML Library, we provide the
following modules :

• Bsml whose signature is Bsmlsig.BSML ;

• Stdlib which is defined as :

module Base = Bsmlbase.Make(Bsml)
module Comm = Bsmlcomm.Make(Bsml)
module Sort = Bsmlsort.Make(Bsml)
module Back = Bsmlbckcomp.Make(Bsml)
module Array = Bsmlskeleton.MakeArray(Bsml)
module List = Bsmlskeleton.MakeList(Bsml)

Thus, for example to use the mkpar primitive of BSML, you should write Bsml.mkpar or you need
to open the module Bsml before calling the function mkpar. To use the function replicate, one can write
Stdlib.Base.replicate or one can first open the module Stdlib and its submodule Base.

There are in fact three different implementations of Bsml, one based on MPI, one on TCP/IP, and
one sequential implementation). There are also three different implementations since there are three
different Bsml modules. The different scripts (bsmlc or bsmlopt with suffix .mpi, .tcp or .seq) handle
these different versions and you do not need to worry about them when you write BSML programs.

3.1 Module Bsmlsig : Interface of all the main components of BSML.

Author(s): Louis Gesbert, Frédéric Gava, Frédéric Loulergue

3.1.1 BSML Primitives

Interface of the modules implementing the BSML primitives

module type BSML =

sig

Types

type ’a par

Abstract type for parallel vector of size p.

In the following we will note <v0, . . ., vp−1> the parallel vector with value vi at processor i

12

Machine parameters accessors

val argv : string array

Returns the arguments from command line with implementation-specific arguments
removed.

val bsp_p : int

Number p of processes in the parallel machine.

val within_bounds : int -> bool

within bounds n is true is n is between 0 and p-1, false otherwise.

val bsp_g : float

BSP parameter g of the parallel machine.

val bsp_l : float

BSP parameter l of the parallel machine.

val bsp_r : float

BSP parameter r of the parallel machine.

Exceptions

exception Invalid_processor of int

Raised when asked for a processor id that is not between 0 and bsp p - 1. In particular, this
exception can be raised by the functions that proj and put return.

exception Timer_failure of string

Parallel operators

val mkpar : (int -> ’a) -> ’a par

Parallel vector creation. Parameters :

• f function to evaluate in parallel

Returns the parallel vector with f applied to each pid: <f 0, . . ., f (p-1)>

val apply : (’a -> ’b) par -> ’a par -> ’b par

Pointwise parallel application. Parameters :

• vf a parallel vector of functions <f0, . . ., fp−1>

• vv a parallel vector of values <v0, . . ., vp−1>

Returns the parallel vector <f0 v0, . . ., fp−1 vp−1>

val put : (int -> ’a) par -> (int -> ’a) par

Global communication. Parameters :

• f = <f0, . . ., fp−1>, fi j is the value that processor i should send to processor j.

Returns a parallel vector g = <g0, . . ., gp−1> where gj i = fi j is the value received by
processor j from processor i.

val proj : ’a par -> int -> ’a

13

projection (dual of mkpar). Makes all the elements of a parallel vector global. Parameters :

• v a parallel vector <v0, . . ., vp−1>

Returns a function f such that f i = vi

val abort : int -> string -> ’a

Aborts computation and quits. Parameters :

• err error code to return

• msg message to print on standard error

val start_timing : unit -> unit

val stop_timing : unit -> unit

val get_cost : unit -> float par

returns a parallel vector which contains, at each processor, the time elapsed between the
calls to start timing and stop timing.

Raises Timer failure if the call to one of those functions was meaningless (e.g.
stop timing called before start timing).

end

3.1.2 Interface for modules providing BSP parameters

Access to the machine parameters from a configuration file.

module type MACHINE PARAMETERS =

sig

type bsp = {
p : int ;

g : float ;

l : float ;

r : float ;

}

Describes the BSP parameters of the machine.

val read : int -> unit

Reads the parameters from the configuration file. Parameters :

• bsp p The current number of processors to choose among the possible configurations

val get : unit -> bsp

Get the current parameters.

Returns the value of the parameters as initialised by read ()

end

3.1.3 Interface for low-level communication modules

Module providing the implementation of the communication functions

module type COMM =

sig

val initialize : unit -> unit

14

Performs implementation-dependent initialization. Should be called only once in the
course of a program

val finalize : unit -> unit

Performs implementation-dependent finalization. This will be called at the end of the
program.

val pid : unit -> int

Returns the processor ID of the host processor

val nprocs : unit -> int

Returns the number of processors in the parallel machine

val argv : unit -> string array

Returns the array of command-line arguments

val send : ’a array -> ’a array

val wtime : unit -> float

Returns the clock

val abort : int -> unit

Aborts the computation

end

3.2 Module Bsmlbase : Very often used functions

module Make :

functor (Bsml : Bsmlsig.BSML) -> sig

Very often used functions

val replicate : ’a -> ’a Bsml.par

replicate x gives a parallel vector with the value x on each process.

val parfun : (’a -> ’b) -> ’a Bsml.par -> ’b Bsml.par

parfun f <x0,. . .,x(p−1)> = <f x0,. . .,f x(p−1)>

Same thing as parfun but with a function of arity 2, 3 or 4.

val parfun2 : (’a -> ’b -> ’c) -> ’a Bsml.par -> ’b Bsml.par -> ’c Bsml.par

val parfun3 :

(’a -> ’b -> ’c -> ’d) ->

’a Bsml.par -> ’b Bsml.par -> ’c Bsml.par -> ’d Bsml.par

val parfun4 :

(’a -> ’b -> ’c -> ’d -> ’e) ->

’a Bsml.par -> ’b Bsml.par -> ’c Bsml.par -> ’d Bsml.par -> ’e Bsml.par

Same thing as apply but with a function of arity 2, 3 or 4.

val apply2 :

15

(’a -> ’b -> ’c) Bsml.par -> ’a Bsml.par -> ’b Bsml.par -> ’c Bsml.par

val apply3 :

(’a -> ’b -> ’c -> ’d) Bsml.par ->

’a Bsml.par -> ’b Bsml.par -> ’c Bsml.par -> ’d Bsml.par

val apply4 :

(’a -> ’b -> ’c -> ’d -> ’e) Bsml.par ->

’a Bsml.par -> ’b Bsml.par -> ’c Bsml.par -> ’d Bsml.par -> ’e Bsml.par

val mask : (int -> bool) -> ’a Bsml.par -> ’a Bsml.par -> ’a Bsml.par

val applyat : int -> (’a -> ’b) -> (’a -> ’b) -> ’a Bsml.par -> ’b Bsml.par

applyat n f1 f2 v applies function f1 at process n and f2 otherwise

val applyif :

(int -> bool) -> (’a -> ’b) -> (’a -> ’b) -> ’a Bsml.par -> ’b Bsml.par

applyif b f1 f2 v applies function f1 at process n if (b n) is true and f2 otherwise

val procs : int list

procs is the list of the process numbers

val this : int Bsml.par

this is the parallel vector such as each process hold its number

val bsml_print : (’a -> unit) -> int -> ’a Bsml.par -> unit Bsml.par

bsml print print element pid element prints the value of element at process pid using
the printer print element

val parprint : (’a -> unit) -> ’a Bsml.par -> unit Bsml.par

parprint print v print the parallel vector v using the printer print, one line
per process, each line beginning with the number of the process. For example,
(parprint print int (this())) will give the following for 4 processes:

0: 0

1: 0

2: 0

3: 0

val get_one : ’a Bsml.par -> int Bsml.par -> ’a Bsml.par

get one <x0,. . .,xp−1> <i0,. . .,ip−1> evaluates to <xi 0,. . .,xi p−1>. The process numbers
are considered module p

val get_list : ’a Bsml.par -> int list Bsml.par -> ’a list Bsml.par

The order of the elements of the result list is the same as the order of the process numbers
in the argument list.

val put_one : (int * ’a) Bsml.par -> ’a list Bsml.par

Each process holds a pair (dst,v) where dst is the number of the process of destination
and v the value to send. If dst is not a valid process number, it is ignored. The result list is
ordered by source process.

val put_list : (int * ’a) list Bsml.par -> ’a list Bsml.par

16

Each process holds an association liste of pairs (dst,v) where dst is the number of the
process of destination and v the value to send. If dst is not a valid process number, it is
ignored. If there are two pairs with the same key, only the first is considered.

val proj_list_pids : ’a Bsml.par -> (int * ’a) list

proj list pids returns a (int * ’a) list in which each first couple element is the number of
the proc holding the ’a value

end

3.3 Module Bsmlcomm : Parallel functions with communications

module Make :

functor (Bsml : Bsmlsig.BSML) -> sig

Parallel functions with communications

val shift : int -> ’a Bsml.par -> ’a Bsml.par

Shifts the values from processes to processes. The parallel cost is n*p+l where n is the
average size of the values.

val shift_right : ’a Bsml.par -> ’a Bsml.par

val shift_left : ’a Bsml.par -> ’a Bsml.par

val totex : ’a Bsml.par -> (int -> ’a) Bsml.par

totex <v0,. . .,vp−1> evaluates to <f0,. . .,fp−1> such as (fi j)=vj. total exchhange

<v0,. . .,vp−1> evaluates to <l0,. . .,lp−1> such as the jth element of li is vj.

val total_exchange : ’a Bsml.par -> ’a list Bsml.par

exception Scatter

scatter partition from <v0,. . .,vp−1>, scatters the value v f rom which is partioned by
the function partition. partition v pid indicates the part of v which will be send to
process pid (it is possible to send nothing by using the value None). from must be a valid
process number, otherwise Scatter is raised.

val scatter : (’a -> int -> ’b option) -> int -> ’a Bsml.par -> ’b Bsml.par

val scatter_list : int -> ’a list Bsml.par -> ’a list Bsml.par

Specialized version for lists, arrays and strings respectively.

val scatter_array : int -> ’a array Bsml.par -> ’a array Bsml.par

val scatter_string : int -> string Bsml.par -> string Bsml.par

exception Gather

gather dst <v0,. . .,vp−1> gathers the values v0,. . .,vp−1 to process dst. With gather the
result is a function f such as (f i) gives vi with i being a valid process number. With
gather list the result is the list [v0;. . .;vp−1]. gather list corresponds to the function
gather of BSMLlib 0.1. If dst is not a valid process, then Gather is raised.

val gather : int -> ’a Bsml.par -> (int -> ’a option) Bsml.par

val gather_list : int -> ’a Bsml.par -> ’a list Bsml.par

exception Bcast

17

bcast direct root v0,. . .,vp−1=vn,. . .,vn if root is a valid process number, otherwise
Bcast is raised. The parallel cost is size*(p-1)*g+l, where size is the size of the value vroot.

val bcast_direct : int -> ’a Bsml.par -> ’a Bsml.par

val bcast_totex_gen :

(’a -> int -> ’b option) ->

((int -> ’b) -> ’c) -> int -> ’a Bsml.par -> ’c Bsml.par

bcast totex gen partition paste root v broadcasts the value at process root of
parallel vector v. The algorithm is the so called total exchange broadcast. It proceeds in
two super-steps: First the value at process root is scattered using partition. Then those
parts are totally exchanged and pasted. For large values this algorithms is faster than
bcast direct.

val bcast_totex_list : int -> ’a list Bsml.par -> ’a list Bsml.par

Specialized versions for lists, arrays, strings and values of any type (but this general
version implies the marshalling of values and then the use of bcast totex string.

val bcast_totex_array : int -> ’a array Bsml.par -> ’a array Bsml.par

val bcast_totex_string : int -> string Bsml.par -> string Bsml.par

val bcast_totex : int -> ’a Bsml.par -> ’a Bsml.par

val scan_direct : (’a -> ’a -> ’a) -> ’a Bsml.par -> ’a Bsml.par

If op is an associative operation, scan direct op <v0,. . .,vp−1> = <s0,. . .,sp−1> where
si=op0<=k<=ivk. Communication cost: (p-1)*n*g+l where n is the average size of values vi.

val scan_logp : (’a -> ’a -> ’a) -> ’a Bsml.par -> ’a Bsml.par

Computes the same result than scan direct but with communication cost: i(logp)∗2∗n∗g+l .

val scan_wide :

((’a -> ’a -> ’a) -> ’a Bsml.par -> ’a Bsml.par) ->

((’a -> ’a -> ’a) -> ’b -> ’b) ->

(’b -> ’a) ->

((’a -> ’a) -> ’b -> ’b) -> (’a -> ’a -> ’a) -> ’b Bsml.par -> ’b Bsml.par

scan wide par scan seq scan last element map op vv is used to compute a parallel
scan over a parallel vector of collections of values. par scan is the parallel scan used.
seq scan is the sequential scan used. last element is a function which return the last
element of a collection. map is a map function over the collection, op is the operation used
for the reduction and vv is the parallel vector of collections.

val scan_wide_direct :

((’a -> ’a -> ’a) -> ’b -> ’b) ->

(’b -> ’a) ->

((’a -> ’a) -> ’b -> ’b) -> (’a -> ’a -> ’a) -> ’b Bsml.par -> ’b Bsml.par

Specialized version of scan wide using scan direct as parallel scan.

val scan_wide_logp :

((’a -> ’a -> ’a) -> ’b -> ’b) ->

(’b -> ’a) ->

((’a -> ’a) -> ’b -> ’b) -> (’a -> ’a -> ’a) -> ’b Bsml.par -> ’b Bsml.par

Specialized version of scan wide using scan logp as parallel scan.

18

val scan_list_direct :

(’a -> ’a -> ’a) -> ’a list Bsml.par -> ’a list Bsml.par

val scan_list_logp : (’a -> ’a -> ’a) -> ’a list Bsml.par -> ’a list Bsml.par

val scan_array_direct :

(’a -> ’a -> ’a) -> ’a array Bsml.par -> ’a array Bsml.par

val scan_array_logp :

(’a -> ’a -> ’a) -> ’a array Bsml.par -> ’a array Bsml.par

Folds. Similar to scans except that the produced vector contains the same value everywhere.
This value is the value at the last process if a scan was computed (non wide case) or the value of
the last element of the collection at the last processor if a wide scan was computed

val fold_direct : (’a -> ’a -> ’a) -> ’a Bsml.par -> ’a Bsml.par

val fold_wide :

((’a -> ’a -> ’a) -> ’a Bsml.par -> ’a Bsml.par) ->

((’a -> ’a -> ’a) -> ’b -> ’a) ->

(’a -> ’a -> ’a) -> ’b Bsml.par -> ’a Bsml.par

val fold_logp : (’a -> ’a -> ’a) -> ’a Bsml.par -> ’b Bsml.par

val fold_list_direct : (’a -> ’a -> ’a) -> ’a list Bsml.par -> ’a Bsml.par

val fold_list_logp : (’a -> ’a -> ’a) -> ’a list Bsml.par -> ’b Bsml.par

val fold_array_direct : (’a -> ’a -> ’a) -> ’a array Bsml.par -> ’b Bsml.par

val fold_array_logp : (’a -> ’a -> ’a) -> ’a array Bsml.par -> ’b Bsml.par

end

3.4 Module Bsmlsort : Sorting

module Make :

functor (Bsml : Bsmlsig.BSML) -> sig

Sorting

regular sampling sort cmp list sorts the list (or array) with respect to the order given by
cmp. The regular sampling BSP algorithm is described in [39, 38]. This sort requires that the
total number of elements be greater than p2. Otherwise Regular sampling sort is raised. The
regular sampling sort insures that at the end of the sort each processor will contains at most
2*n/p elements, where n is the total number of elements.

exception Regular_sampling_sort

val regular_sampling_sort_list :

(’a -> ’a -> bool) -> ’a list Bsml.par -> ’a list Bsml.par

val regular_sampling_sort_array :

(’a -> ’a -> int) -> ’a array Bsml.par -> ’a array Bsml.par

end

3.5 Module Tools : Useful sequential functions

val natmod : int -> int -> int

Modulo

val from_to : int -> int -> int list

19

from to n1 n2 = [n1;n1+1;...;n2]

val filtermap : (’a -> bool) -> (’a -> ’b) -> ’a list -> ’b list

filtermap p f l applies f to each element of l which satifies the predicate p

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

Function composition.

val id : ’a -> ’a

Identity function

val is_empty : ’a -> bool

Tests whether a value is considered as an empty message.

3.6 Module Bsmlbckcomp : For backward compatibility

module Make :

functor (Bsml : Bsmlsig.BSML) -> sig

For backward compatibility

See the documentation of version 0.1. Those functions must be avoided from now on.

val bsml_begin : unit -> unit

val bsml_end : unit -> unit

exception Get_failure of string

val get : ’a Bsml.par -> int list Bsml.par -> (int, ’a) Hashtbl.t Bsml.par

exception Put_failure of string

val put : (int * ’a) list Bsml.par -> (int, ’a) Hashtbl.t Bsml.par

val bsml_abort_string : string -> unit

val scatter : (’a -> (int * ’b) list) -> int -> ’a Bsml.par -> ’b Bsml.par

See the documentation of version 0.2. This function should be avoided from now on.

exception Unsafe_proj

val safe_proj : ’a Bsml.par -> ’a

safe proj <v,. . .,v> = v, raises the exception Unsafe proj otherwise

end

3.7 Module Bsmlskeleton : Distributed structures

module type TYPE =

sig

type ’a t

val init : int -> (int -> ’a) -> ’a t

val length : ’a t -> int

val empty : ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

20

val zip : (’a -> ’b -> ’c) ->

’a t -> ’b t -> ’c t

val zip2 : (’a -> ’b -> ’c -> ’d) ->

’a t ->

’b t -> ’c t -> ’d t

val to_array : ’a t -> ’a array

val to_list : ’a t -> ’a list

val shift_left : ’a -> ’a t -> ’a t

val shift_right : ’a -> ’a t -> ’a t

val concat : ’a t list -> ’a t

val get_last : ’a t -> ’a

val get_first : ’a t -> ’a

val sub : ’a t -> int -> int -> ’a t

end

module Make :

functor (T : TYPE) -> functor (Bsml : Bsmlsig.BSML) -> sig

val make : (int -> ’a) -> int -> ’a T.t Bsml.par

make f n gives a parallel vector holding a distributed structure of size n, with f applied
onto each index of the structure (written [...]):

< [f 0 ; f 1 ; ... ; f (n-1)] , [f n ; f (n+1) ; ...] , . . . >.

The parallel cost is max (wi) where wi is the execution time of f i.

val length : ’a T.t Bsml.par -> int

length gives the size of the distributed structure. The parallel cost is 2 max (wi) where wi is
the exploring time of the structure at process i.

val extract : ’a T.t Bsml.par -> ’a T.t

extract gathers the data from the distributed structure into an array. The parallel cost is 2

max (wi) where wi is the exploring time of the structure at process i.

val par : ’a T.t -> ’a T.t Bsml.par

par is the dual of extract, it distributes a sequential structure over many processors.

val map : (’a -> ’b) -> ’a T.t Bsml.par -> ’b T.t Bsml.par

map applies a function of arity 1 on each element of the distributed structure. The parallel
cost is 2 max (wi) where wi is the execution time of f i.

val zip :

(’a -> ’b -> ’c) -> ’a T.t Bsml.par -> ’b T.t Bsml.par -> ’c T.t Bsml.par

zip applies a function of arity 2 on each pair (element of the first distributed structure,
element of the second distributed structure). The parallel cost is 3 max (wi) where wi is the
execution time of f i.

val map_index : (int -> ’a -> ’b) -> ’a T.t Bsml.par -> ’b T.t Bsml.par

map index applies a function of arity 2 (first argument is the index within the distributed
structure) on each element of the distributed structure. The parallel cost is 5 max (wi)
where wi is the execution time of f i.

21

val zip_index :

(int -> ’a -> ’b -> ’c) ->

’a T.t Bsml.par -> ’b T.t Bsml.par -> ’c T.t Bsml.par

zip index applies a function of arity 3 (first argument is the index within the distributed
structure on each pair (element of the first distributed structure, element of the second
distributed structure). The parallel cost is 6 max (wi) where wi is the execution time of f i.

val to_array : ’a T.t Bsml.par -> ’a array Bsml.par

to array converts a distributed structure into a distributed array. The parallel cost is 2 max
(wi) where wi is the exploring time of the structure at process i.

val to_list : ’a T.t Bsml.par -> ’a list Bsml.par

to list converts a distributed structure into a distributed list. The parallel cost is 2 max
(wi) where wi is the exploring time of the structure at process i.

val shift_left : ’a -> ’a T.t Bsml.par -> ’a T.t Bsml.par

shift left v a shifts the distributed structure a to the left and inserts v to its end. The
parallel cost is 16 max (wi) + g h + L where wi is the exploring time of the structure at
process i and h = 1.

val shift_right : ’a -> ’a T.t Bsml.par -> ’a T.t Bsml.par

shift right v a shifts the distributed structure to the right and inserts v to its beginning.
The parallel cost is 16 max (wi) + g h + L where wi is the exploring time of the structure at
process i and h = 1.

end

module MakeArray :

functor (Bsml : Bsmlsig.BSML) -> sig

val make : (int -> ’a) -> int -> ’a array Bsml.par

make f n gives a parallel vector holding a distributed array of size n, with f applied onto
each index of the array. < [|f 0 ; f 1 ; . . . ; f (n-1)|] , [|f n ; f (n+1) ; . . .|] , . . . >. The parallel
cost is max (wi) where wi is the execution time of f i.

val length : ’a array Bsml.par -> int

length gives the size of the distributed array. The parallel cost is 2 max (wi) where wi is the
exploring time of the array at process i.

val extract : ’a array Bsml.par -> ’a array

extract gathers the data from the distributed array into an array. The parallel cost is 2 max
(wi) where wi is the exploring time of the array at process i.

val par : ’a array -> ’a array Bsml.par

par is the dual of extract, it distributes a sequential array over many processors.

val map : (’a -> ’b) -> ’a array Bsml.par -> ’b array Bsml.par

map applies a function of arity 1 on each element of the distributed array. The parallel cost
is 2 max (wi) where wi is the execution time of f i.

val zip :

(’a -> ’b -> ’c) ->

’a array Bsml.par -> ’b array Bsml.par -> ’c array Bsml.par

22

zip applies a function of arity 2 on each pair (element of the first distributed array, element
of the second distributed array). The parallel cost is 3 max (wi) where wi is the execution
time of f i.

val map_index : (int -> ’a -> ’b) -> ’a array Bsml.par -> ’b array Bsml.par

map index applies a function of arity 2 (first argument is the index within the distributed
array) on each element of the distributed array. The parallel cost is 5 max (wi) where wi is
the execution time of f i.

val zip_index :

(int -> ’a -> ’b -> ’c) ->

’a array Bsml.par -> ’b array Bsml.par -> ’c array Bsml.par

zip index applies a function of arity 3 (first argument is the index within the distributed
array on each pair (element of the first distributed array, element of the second distributed
array). The parallel cost is 6 max (wi) where wi is the execution time of f i.

val to_list : ’a array Bsml.par -> ’a list Bsml.par

to list converts a distributed array into a distributed list. The parallel cost is 2 max (wi)
where wi is the exploring time of the array at process i.

val shift_left : ’a -> ’a array Bsml.par -> ’a array Bsml.par

shift left v a shifts the distributed array a to the left and inserts v to its end. The
parallel cost is 16 max (wi) + g h + L where wi is the exploring time of the array at process i
and h = 1.

val shift_right : ’a -> ’a array Bsml.par -> ’a array Bsml.par

shift right v a shifts the distributed array to the right and inserts v to its beginning. The
parallel cost is 16 max (wi) + g h + L where wi is the exploring time of the array at process i
and h = 1.

end

module MakeList :

functor (Bsml : Bsmlsig.BSML) -> sig

val make : (int -> ’a) -> int -> ’a list Bsml.par

make f n gives a parallel vector holding a distributed list of size n, with f applied onto
each index of the list. < [f 0 ; f 1 ; . . . ; f (n-1)] , [f n ; f (n+1) ; . . .] , . . . >. The parallel cost is
max (wi) where wi is the execution time of f i.

val length : ’a list Bsml.par -> int

length gives the size of the distributed list. The parallel cost is 2 max (wi) where wi is the
exploring time of the list at process i.

val extract : ’a list Bsml.par -> ’a list

extract gathers the data from the distributed list into a list. The parallel cost is 2 max (wi)
where wi is the exploring time of the list at process i.

val par : ’a list -> ’a list Bsml.par

par is the dual of extract, it distributes a sequential list over many processors.

val map : (’a -> ’b) -> ’a list Bsml.par -> ’b list Bsml.par

23

map applies a function of arity 1 on each element of the distributed list. The parallel cost is
2 max (wi) where wi is the execution time of f i.

val zip :

(’a -> ’b -> ’c) -> ’a list Bsml.par -> ’b list Bsml.par -> ’c list Bsml.par

zip applies a function of arity 2 on each pair (element of the first distributed list, element
of the second distributed list). The parallel cost is 3 max (wi) where wi is the execution time
of f i.

val map_index : (int -> ’a -> ’b) -> ’a list Bsml.par -> ’b list Bsml.par

map index applies a function of arity 2 (first argument is the index within the distributed
list) on each element of the distributed list. The parallel cost is 5 max (wi) where wi is the
execution time of f i.

val zip_index :

(int -> ’a -> ’b -> ’c) ->

’a list Bsml.par -> ’b list Bsml.par -> ’c list Bsml.par

zip index applies a function of arity 3 (first argument is the index within the distributed
list on each pair (element of the first distributed list, element of the second distributed list).
The parallel cost is 6 max (wi) where wi is the execution time of f i.

val to_array : ’a list Bsml.par -> ’a array Bsml.par

to array converts a distributed list into a distributed array. The parallel cost is 2 max (wi)
where wi is the exploring time of the list at process i.

val shift_left : ’a -> ’a list Bsml.par -> ’a list Bsml.par

shift left v a shifts the distributed list a to the left and inserts v to its end. The parallel
cost is 16 max (wi) + g h + L where wi is the exploring time of the list at process i and h = 1.

val shift_right : ’a -> ’a list Bsml.par -> ’a list Bsml.par

shift right v a shifts the distributed list to the right and inserts v to its beginning. The
parallel cost is 16 max (wi) + g h + L where wi is the exploring time of the list at process i
and h = 1.

end

24

Bibliography

[1] G. Akerholt, K. Hammond, S. Peyton-Jones, and P. Trinder. Processing transactions on GRIP, a
parallel graph reducer. In A. Bode, M. Reeve, and G. Wolf, editors, PARLE’93, Parallel Architectures
and Languages Europe, number 694 in Lecture Notes in Computer Science, Munich, June 1993.
Springer.

[2] Arvind and R. Nikhil. I-structures: Data structures for parallel computing. ACM Transactions on
Programming Languages and Systems, 11(4), 1989.

[3] O. Ballereau, F. Loulergue, and G. Hains. High-level BSP Programming: BSML and BSλ. In
G. Michaelson and Ph. Trinder, editors, Trends in Functional Programming, pages 29–38. Intellect
Books, 2000.

[4] M. Bamha, F. Bentayeb, and G. Hains. An efficient scalable parallel view maintenance algorithm
for shared nothing multi-processor machines. In T. Bench-Capon, G. Soda, and A. Min Tjoa,
editors, 10th International Conference on Database and Expert Systems Applications, DEXA’99, number
1677 in LNCS, pages 616–625. Springer-Verlag, August 30 – September 3 1999.

[5] R. H. Bisseling. Parallel Scientific Computation. Oxford University Press, 2004.

[6] R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous parallel architectures.
In B. Pehrson and I. Simon, editors, Technology and Foundations: Information Processing ’94, Vol. I,
volume 51 of IFIP Transactions A, pages 509–514. Elsevier Science Publishers, Amsterdam, 1994.

[7] W. Bousdira, F. Gava, L. Gesbert, F. Loulergue, and G. Petiot. Functional Parallel Programming
with Revised Bulk Synchronous Parallel ML. In Koji Nakano, editor, 2nd International Workshop
on Parallel and Distributed Algorithms and Applications (PDAA). IEEE Computer Society, 2010.

[8] A. Braud and C. Vrain. A parallel genetic algorithm based on the BSP model. In Evolutionary
Computation and Parallel Processing GECCO & AAAI Workshop, Orlando (Florida), USA, 1999.

[9] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, 1989.

[10] D. C. Dracopoulos and S. Kent. Speeding up genetic programming: A parallel BSP implementa-
tion. In First Annual Conference on Genetic Programming. MIT Press, July 1996.

[11] F. Dehne (Guest Editor). Special issue on coarse-grained parallel algorithms. Algorithmica, 14:173–
421, 1999.

[12] C. Foisy and E. Chailloux. Caml Flight: a portable SPMD extension of ML for distributed memory
multiprocessors. In A. W. Böhm and J. T. Feo, editors, Workshop on High Performance Functionnal
Computing, Denver, Colorado, April 1995. Lawrence Livermore National Laboratory, USA.

[13] F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML to Avoid Parallel
Nesting. Future Generation Computer Systems, 21(5):665–671, 2005.

[14] Frédéric Gava. A Polymorphic Type System for BSML. Technical Report 2002-12, University of
Paris Val-de-Marne, LACL, 2002.

25

[15] L. Granvilliers, G. Hains, Q. Miller, and N. Romero. A system for the high-level parallelization
and cooperation of constraint solvers. In Y. Pan, S. G. Akl, and K. Li, editors, Proceedings of
International Conference on Parallel and Distributed Computing and Systems (PDCS), pages 596–601,
Las Vegas, USA, 1998. IASTED/ACTA Press.

[16] G. Hains and C. Foisy. The Data-Parallel Categorical Abstract Machine. In A. Bode, M. Reeve,
and G. Wolf, editors, PARLE’93, number 694 in LNCS, pages 56–67. Springer, 1993.

[17] G. Hains and F. Loulergue. Functional Bulk Synchronous Parallel Programming using the BSML-
lib Library. In S. Gorlatch, editor, Second International Workshop on Constructive Methods for Parallel
Programming (CMPP’2000), Research Report MIP-2000-07, June 2000.

[18] G. Hains, F. Loulergue, and J. Mullins. Concrete data structures and functional parallel program-
ming. Theoretical Computer Science, 258(1-2):233–267, 2001.

[19] J.M.D. Hill, W.F. McColl, and al. BSPlib: The BSP Programming Library. Parallel Computing,
24:1947–1980, 1998.

[20] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[21] Guy Horvitz and Rob H. Bisseling. Designing a BSP version of ScaLAPACK. In Bruce Hendrick-
son et al., editor, Proceedings Ninth SIAM Conference on Parallel Processing for Scientific Computing.
SIAM, Philadelphia, PA, 1999.

[22] G. Jones. Programming in Occam. Prentice-Hall, 1987.

[23] Xavier Leroy. The Objective Caml System 3.04, 2001. Web pages at http://www.caml.org.

[24] F. Loulergue. BSλp: Functional BSP Programs on Enumerated Vectors. In J. Kazuki, editor, Inter-
national Symposium on High Performance Computing, number 1940 in Lecture Notes in Computer
Science, pages 355–363. Springer, October 2000.

[25] F. Loulergue. Distributed Evaluation of Functional BSP Programs. Parallel Processing Letters,
(4):423–437, 2001.

[26] F. Loulergue. Parallel Juxtaposition for Bulk Synchronous Parallel ML. In H. Kosch,
L. Boszorményi, and H. Hellwagner, editors, Euro-Par 2003, number 2790 in LNCS, pages 781–788.
Springer Verlag, 2003.

[27] F. Loulergue, F. Gava, and D. Billiet. Bulk Synchronous Parallel ML: Modular Implementation
and Performance Prediction. In Vaidy S. Sunderam, G. Dick van Albada, Peter M. A. Sloot, and
Jack Dongarra, editors, International Conference on Computational Science, Part II, number 3515 in
LNCS, pages 1046–1054. Springer, 2005.

[28] F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional BSP Programs. Science of Computer
Programming, 37(1-3):253–277, 2000.

[29] W. F. McColl. Universal computing. In L. Bouge and al., editors, Proc. Euro-Par ’96, volume 1123

of LNCS, pages 25–36. Springer-Verlag, 1996.

[30] W.F. McColl. Scalable parallel programming. Course given in the Oxford IGDP (Integrated
Graduate Development Programme in Software Engineering), 1996.

[31] A. Merlin, G. Hains, and F. Loulergue. A SPMD Environment Machine for Functional BSP Pro-
grams. In Proceedings of the Third Scottish Functional Programming Workshop, august 2001.

[32] P. Panangaden and J. Reppy. The essence of concurrent ML. In F. Nielson, editor, ML with
Concurrency, Monographs in Computer Science. Springer, 1996.

[33] S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1998.

[34] R. O. Rogers and D. B. Skillicorn. Using the BSP cost model to optimise parallel neural network
training. Future Generation Computer Systems, 14(5-6):409–424, 1998.

26

[35] D. B. Skillicorn. Multiprogramming BSP programs. Department of Computing and Information
Science, Queen’s University, Kingston, Canada, October 1996.

[36] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP. Scientific
Programming, 6(3), 1997.

[37] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.

[38] K. R. Sujithan and J. M. D. Hill. Collection types for database programming in the BSP model. In
Fifth Euromicro Workshop on Parallel and Distributed Processing. IEEE CS Press, January 1997.

[39] K. Ronald Sujithan. Towards a scalable, parallel object database - the bulk synchronous parallel
approach,. Technical Report PRG-TR-17-96, Programming Research Group, Oxford University
Computing Laboratory, August 1996.

[40] Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103, August 1990.

27

	Introduction
	The BSP Model
	Explicit processes and the SPMD programming style
	Overview of the core BSML library
	Examples
	Remark on nesting
	A new syntax for BSML

	The BSML Scripts
	Compilation (bsmlc and bsmlopt)
	The toplevel system (bsml)

	The BSML Library
	Module Bsmlsig : Interface of all the main components of BSML.
	BSML Primitives
	Interface for modules providing BSP parameters
	Interface for low-level communication modules

	Module Bsmlbase : Very often used functions
	Module Bsmlcomm : Parallel functions with communications
	Module Bsmlsort : Sorting
	Module Tools : Useful sequential functions
	Module Bsmlbckcomp : For backward compatibility
	Module Bsmlskeleton : Distributed structures

	Bibliography

